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* Focused on the assessment of ADS-equipped vehicles safety,

but useful in human-driven vehicles also
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Abstract

he driving safety performance of automated driving
| system (ADS)-equipped vehicles (AVs) must be quanti-
fied using metrics in order to be able to assess the
driving safety performance and compare it to that of human-
driven vehicles. In this research, driving safety performance
‘metrics and methods for the measurement and analysis of
said metrics are defined and/or developed.
A comprehansive itrature review of metrics that have been
he driving safety of both
human- dnvm ve}ncles and AVs was l:undn:led A list of
proposed metri the li
that mmmqmmmkmmedmgﬁwm
‘mance of an AV was then compiled, including proximal surro-
gate indicators, driving behaviors, and rules-of-the-road viola-
tions. These metrics, which include metrics from on- and off-
board data sources, allow the driving safety performance of an
AV to be measured in a variety of situations, including crashes,
e and e Th bl
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Introduction

the evaluation of temporal flows and the quantification of key
aspects of driving safety performance. The identification and
explaration of metrics focusing explicitly on AVs as well as
proposing a comprehensive set of metrics is a unique contribu-
tion to the literature. The objective is to develop a concise set of
metrics that allow driving safety performance assessments to
be eﬂ”echwly made and d:al al\g\ with Lhe [leeds of both I.he
ADS de

and u:cummndate daﬁerenoes in cultun]lreglcml.l norms.

Concurrent project wor i

with a sensor suite u{mmmx LIDAR, and RADAR to collect
data requiring off board sources and employing test AV to
collect data urrent
work includes development of artificial intelligence and

computer

metrics using the collected data. Future work inchudes using the

mﬂededdatamda]gmﬂunslnﬁmhu&ehs( of metrics and
that uses the metrics to provid

overal driving safety performance assessment score fo 0 AV,

While efforts have been made to develop driving safety

ne of the biggest questions facing the safe depl
and commercialization of ADS (ADS)-equipped
vehicles (AVs) today is “What level of driving safety
performance is required compared to that of a human-
driven vehicle?”
In order to answer this question, a methodology to
quantitatively measure and contrast the driving safety
of AVs and by driven vehicles is required.

-driven vehicles (e.g., [1. 2]),
to |]1= sathors’ knuw]udge an overall methodology for a
driving safety performance assessment does not exist.
Moreover, since several of the metrics were developed with
human-driven vehicles in mind, some of these metrics are
less applicable to AVs. A need exists to develop metrics as a
first step towards development of the driving safety perfor-
mance assessment methodology.
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Purpose of this work

* Develop a methodology for calibration of MSD metric from Naturalistic driving
data

* This methodology can help government and regulators set the desired level of
risk defined by safety metrics like MSDV derived by real world data




Formulation of Minimum Safe Distance Violation

; lat lat l . jlong
1 if dlat < glat A qlong « g

MSDV' = min
0 else
1 if MSDV' =1 A Originated by AV
MSDV = / g Y
0 else
Where:
d'°™9: longitudinal distance between two vehicles and d'@t: lateral distance between two vehicles
d,l,ﬂ}f: minimum safe longitudinal distance between two vehicles and d!¢, : minimum safe lateral distance between two vehicles as defined by RSS model [1]:

2 2
dlong _ 1 2 (vr + pamax,accel) vf
min — |VrP T 2 Amax,accelr P -

2 amin,decel 2 amax,decel

v, = velocity of the rear car
vy = velocity of the front car

p = response time

@maxaccel = Maximum acceleration of the rear car
Aminbrake = MiNimum braking of the rear car
amax brake = Maximum braking of the front car

[1] Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, “On a Formal Model of Safe and Scalable Self-driving Cars”, 2017, https://arxiv.org/abs/1708.06374
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Dataset

¢ L@VG'XData I_A Freeways Dataset (US_based Data) https://www.levelxdata.com/drone-datasets/5-highd-usa.html
* 3 hours long, 2 different locations in Los Angeles freeways, +30,000 vehicles (car, truck, van, etc)

* Extracted car-following situations:

* Divided Safe Events (SE) and Safety-Critical Events (SCE)
* SCE where longitudinal acceleration < —4 m/s?
* SCE accounted for 0.15% of cases
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Calibration Framework

P,max,accel,@min,decelYmax,decel

argmin
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tif

D 1di(0) = di_pss(®)

tio

drssse(t) = dscp(t)
drsssce(t) < dsg(t)

Solved with GA with
non-linear constraints

—

tio: start frame of vehicle i; t;f: end time/frame of vehicle i; d;(t): headway distance to the preceding vehicle at time t; d;_gss(t): RSS distance at time t.
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Experimental Results

Parameters’ boundaries:

Optimization Results

0.1s< p<2.5s
0.1g<a,,, sou <0.46g
0.1g<a,.,u <0.82g,

0.1g<a_; ,u <0.82¢g
A ninbrake < Pmax brake

| | Method1 | Method 2

p(s) 1.9236 0.1168

G e (/57 3.805 4.836

G praie (M1 57) 4.585 8.086

i praie (/57 4.585 7.986
Ei;:;:e‘;‘:’; 94.89% 0.0035%
drgs —dyp (m) 19.6864 -21.1243

0 (dpss —dyp )(m) 9.8863 8.4355




Validation of Results

* Validating Method 1 results in complete dataset
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Key Takeaways & Future Work

* Takeaways:
* Developed a novel methodology to calibrate a safety metric based on Naturalistic driving data without
having to focus on safety critical events (rare)

* Initially validated in US-based data
* Well calibrated metrics like MSDV can be then used to identify dangerous situations and shape theway
we define scenarios for validating AVs

* Future Work:
* Expand validation with other datasets
* Expand the validation to other types of driving situations (not only car-following)
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