D2.2
Context map on user expectations, goals, ideas, reservations and requirements

Authors:
Carolin Zachäus/
Gereon Meyer

Carolin.Zachaeus@vdivde-it.de

Date: 08.05.2017
Consortium

<table>
<thead>
<tr>
<th>No</th>
<th>Participant organisation name</th>
<th>Short Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDI/VDE Innovation + Technik GmbH</td>
<td>VDI/VDE-IT</td>
<td>DE</td>
</tr>
<tr>
<td>2</td>
<td>Renault SAS</td>
<td>RENAULT</td>
<td>FR</td>
</tr>
<tr>
<td>3</td>
<td>Centro Ricerche Fiat ScpA</td>
<td>CRF</td>
<td>IT</td>
</tr>
<tr>
<td>4</td>
<td>BMW Group</td>
<td>BMW</td>
<td>DE</td>
</tr>
<tr>
<td>5</td>
<td>Robert Bosch GmbH</td>
<td>BOSCH</td>
<td>DE</td>
</tr>
<tr>
<td>6</td>
<td>NXP Semiconductors Netherlands BV</td>
<td>NXP</td>
<td>NL</td>
</tr>
<tr>
<td>7</td>
<td>Telecom Italia S.p.A.</td>
<td>TIM</td>
<td>IT</td>
</tr>
<tr>
<td>8</td>
<td>NEC Europe Ltd.</td>
<td>NEC</td>
<td>UK</td>
</tr>
<tr>
<td>9</td>
<td>Rheinisch-Westfälische Technische Hochschule Aachen, Institute for Automotive Engineering</td>
<td>RWTH</td>
<td>DE</td>
</tr>
<tr>
<td>10</td>
<td>Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Institute for Structural Durability and System Reliability FHG</td>
<td>FHG</td>
<td>DE</td>
</tr>
<tr>
<td>11</td>
<td>CLEPA aisbl – The European Association of Automotive Suppliers</td>
<td>CLEPA</td>
<td>BE</td>
</tr>
<tr>
<td>12</td>
<td>Asociación Española de Fabricantes de Equipos y Componentes para Automoción SERNAUTO</td>
<td>SERNAUTO</td>
<td>ES</td>
</tr>
</tbody>
</table>
Context map on user expectations, goals, ideas, reservations and requirements

The overall development of a European Roadmap on Connected and Automated Driving within the SCOUT project is based on a storymap methodology. This way of graphic visualization of information e.g. on posters is a successful way to interactively facilitate group work. It is particularly powerful in strategic planning processes where new insights shall arise from the engagement and cooperation of many participants with diverse backgrounds. Drawing a big picture of a problem during a meeting can reveal relationships between different aspects and perspectives. It thereby helps to think in systems and to align the group understanding. Furthermore, it creates a memorable product that everybody sees being created. This strengthens the participants’ relation with the outcome, helps them to tell the story about the plan and supports the implementation of follow-up actions.

This methodology was exploited to develop a context map on user expectations, goals, ideas, reservations and requirements within the SCOUT project. Hereby, the history of the topic, challenges and opportunities, individual values and expectations was collected. The context map is an interim stage towards the development of a common roadmap and is particularly helpful in stakeholder consultation and engagement processes. It was developed with the involvement of stakeholders from cities, IT and automotive sector at the co-creation workshop “Use cases and visions for automated and connected driving in EU” in Brussels on the 22nd February 2017 and thereby provided great opportunities for the engagement of diverse actors within the SCOUT project, particularly in the strategy development process of defining goals, gaps and hurdles. Step by step, the ideas, expectations and requirements of multiple stakeholders have been gathered and visualized in the context map, which is the base to create a vision on connected and automated driving for 2030 and to further develop an established European roadmap on connected and automated driving – all including the use of graphic visualization.
D2.2 - Context map on user expectations, goals, ideas, reservations and requirements

CONTEXT MAP

TRENDS
- Sustainable cities
- Demographic change
- Sharing economy
- Changing life styles
- Globalization
- New global order

POLITICAL FACTORS
- EU competitiveness
- Incentives
- Harmonization
- Employment

TECHNOLOGICAL FACTORS
- Localization, positioning & mapping
- Connectivity (e.g. 5G)
- Environment sensing & perception
- Semiconductor electronics
- Machine learning algorithms
- Vehicle system architectures
- Digital platforms

ECONOMIC FACTORS
- Affordability
- Market growth
- Private / public investment
- Competition balance

UNCERTAINTIES
- From driving to flying
- Safety & security
- Mixed traffic
- Acceptance
- Complexity
- Switch to manual driving
- Ethics
- Cyber security

VISION
Seamless mobility of people and goods on demand
Non-compromise safety
Efficient & affordable
Saving & freeing time
Sharing mobility

CONNECTED & AUTOMATED DRIVING 2030

USER NEEDS
- Freedom
- Safety
- Convenience
- User-centric
- Happiness

Sprint
Scout