German Aerospace Center
Institute of Transportation Systems

Digital Test Areas

“Application Platform for urban Intelligent Mobility” in Braunschweig
“Test Area Lower Saxony” on Highways nearby Braunschweig

Lennart Asbach,
Department Verification and Validation
German Aerospace Center

- Research & Development in
 - Aeronautics
 - Space
 - Transport
 - Energy
 - Defense and Security

- Approx. 8000 Employers
- 2015: 885 Mio € budget

Institute of Transportation Systems, Prof. Dr.-Ing. Karsten Lemmer

- Idea: “Aerospace technology for transport systems (road, rail, management)”

- Creating concepts and designs for cooperative and automated driving
- Developing connected and automated vehicle functions
- Operation of test areas and simulation environments
Current Institutes H2020 C-ITS research projects

- **Autopilot**, IoT-01-2016, Valet-Parking with infrastructure support
- **L3-Pilot**, ART-02-2016, in-vehicle human factors
- **XCycle**, MG-3.4-2014, infrastructure support for VRU
- **Automate**, MG 3.6-2017, automation HF
- **MAVEN**, MG 3.6-2017, management of automation
- **ADAS & ME**, MG 3.6-2017, situation awareness
- **CARTRE**, ART-06-2016, networking
- **InterACT**, ART-04-2017, driver / automation interaction, project coordinator
- **C-Mobile**, MG 6.2, impact assessment in large scale city pilots
- **TransAID**, ART-05-2016, traffic management, project coordinator

Years:
- 2017
- 2018
- 2019
- 2020
In Operation:
Test Area „Application Platform for Intelligent Mobility“ - AIM
AIM: Support of connectivity and automation in real traffic

• R&D platform for vehicle and mobility applications and services in real traffic situations

• Focused on future mobility scenarios including connectivity and automation

• Additional modules (virtual test area, simulators, methods and toolchains, communication protocols, situation detection, research vehicles, etc.)
Urban Test Area AIM – ITS G5 Modules
ITS G5 reference track in the city of Braunschweig

- 35 ITS roadside stations at traffic light poles
- Direct link to traffic light controllers
- Uplinks to SW-management
- Wi-Fi Clusters combine RSUs for real-time processing and local data aggregation
- Development and test of cooperative systems

Current AIM communication protocols
- SPaT: SAE J2735 region-D definition
- MAP: SAE J2735 region-D definition
- CAM: v1.3.2 (EN 302 637-2, 2014-09)
- DENM: v1.2.2 (EN 302 637-3, 2014-09)
- GeoNetworking: v1.2.1 (EN 302 636-4-1, 2014-05)
- GeoNetworking BTP: v1.2.1 (EN 302 636-5-1, 2013-10)

IRS = Intelligent Roadside Station
Realization 2014: Large variety of laboratories and test vehicles available
Under Construction:
Test Area „Lower Saxony“
Already in operation.

Plan: Build Motorway Test Area on E30 for several CAD testing purposes.
Test Area “Lower Saxony”

- High precise digital map
- Virtualized traffic signs
- Track with sensors and communication modules
- DLR is an associated partner in C-Roads

AIM Braunschweig
Objectives Test Area “Lower Saxony”

- Development and Validation Platform for C-ITS Day 1 Applications
- Test and Optimization of CAD by having a Ground Truth
- Development environment for swarm intelligence
- Test area for technology evaluation (e.g. ITS-G5 vs. 4G/5G)
- Interoperability Tests for cooperative features/interfaces
- Real test area for HAD.
Objectives Test Area “Lower Saxony”

- Analysis of Message Hopping by using RSUs
- Test and optimization of e-Horizon systems
- Optimization of local situation recognition by using Car2X sensor information and development environment for car2x sensor sharing.
- Development environment for landmark navigation approaches.
Support of test and deployment of CAD – Hardware setup, example for small part on A39:

- Digital map
- Virtualized traffic signs

Sensors and communication

Communication

Kreuz Wolfsburg/Königslutter (A2 / A39)

Kreuz Braunschweig Süd (A39 / A391)

Anschlussstelle Cremlingen (A39)

Q1-Q3 2018

Q3 2017
Current Situation

- First tests have been performed (mainly communication -> where to place RSUs)
- Sensor concepts have been elaborated (stereoscopic cameras with auto calibration)
- Road-side works are going to be tendered within the next weeks.
- Specific requirements of partners are collected, first applications are designed.
- Backend systems are set up, works for connection to DLR site are in preparation (all-glass fiber cables available next to road).
Challenges

- Which qualities and which standards are necessary?
- Which measures are defined and how do we classify scenarios?
- Which architectures are adequate for HAD?
- How can we increase safety in HAD?
- How can we describe HAD functions and applications formally?
- Which methods for homologation procedures are required?